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Abstr;! ct

The fini te element method was used to solve the two-

dimensional, non-linear, small-disturbance, velocity-potential

equation for steady transonic flow over a thin airfoil. Two

finite element upwind techniques were invcstigated to see if

either could accurately model the supersonic (hyperbolic)

zone that is embedded in the subsonic flow field. The two

techniques are: upwind functions and an alternative integra-

tion scheme. Both techniques used Galrkin's Method of We ighted

Residuals, but differed in the supersonic region.

The upwind method involves adding an upwind function to

the weight function in order to weight the upstream nodes of

an element more than the downstream nodes. The alternative

integration method involves Galerkin's method for all ele-

ments. In the hyperbolic region, the elemental stiffness

matrix is integrated only over the area inside the forward

mach cones of the elemental nodes. Both these methods account

for the physics involved in supersonic flow. That is, the

solution at a point in supersonic flow can only be influenced

by points inside the forward mach cone whose apex is located

at that point.

Neither of these methods produced results that agree with

experimental data or other solutions. The alternative inte-

gration method never converged. The upwind method converged,

but did not converge to an acceptable solution.

vii



INVESTIGAT].ON OF U PWI ND SCIIEMLS FOR

FINITE EEMENT ANALYS]S OF TRANSONIC

FLOW OVER THIN AIRF'OILS

I. Introduction

In transonic flow, nonlinear equations wiLb changing

characteristics pose major problems in solving the governing

equations. These equations need to be solved since many of

today's high performance aircraft encounter somc form of

transonic flow. Over the last fifteen years, investigators

have published many papers in this area.

Transonic flow calculations are important, because in

this region, violent oscillatory motion is often encountered.

If the effects of transonic flow are not incorporated into

an aircraft's design, the results could be detrimental to

its mission. Whether it be an F-16 going from subsonic to

supersonic flight, or the tip of a helicopter blade, the

need for transonic flow calculations are evident in today's

high technology aircraft.

Most of the work done in transonic flow involves the

use of potential flow theory and finite difference methods.

The velocity potential equation is used, because for steady,

irrotational, frictionless, isentropic flow of a perfect gas,

it is a single equation which satisfies the law of-conserva-

tion of mass, Newton's second principle of motion, and the

laws of thermodynamics. Finite difference methods are used,

because they have been around for a long time, and have proved



to be a realistic way to solve' fluid f low. probleIms Only

recently has the f[inite elei,,nt motod (EL.M) b7en e;lIployed

to solve those types of problem02s. Initially, a method used

for structural probleis, the FEI is now bein,; investigated

to see how well it solves fluid flow problems.

Fini te Element Bac_,round/r.viots Work

The finite element method (t'JI) is a nume.rical i;wthod

used to solve partial diIferential equations, and ha., been

around for about thirty years. Prior to the mid 1960's,

the FEM was used to solve for static forces in structures.

The method was used, because structures are nothing more

than an assemblage of finite parts connected at a finite

number of points or nodes. Then, forcing equilibrium was

enough to determine the loading at each node.

When the mid 1960's came, the FEM had already proved

itself useful in solving structural problems using energy

principles like the Rayliegh-Ritz method, and was now intro-

duced to non-structural problems such as fluid flow. This

worked out very well for simple problems in subsonic flow,

and slowly has been proved useful in more complicated non-

linear problems such as transonic flow. Now, the FEY is

used to solve many types of boundary and initial value

problems.

Mathematicians have linked the FEM closely wi"th varia-

tional energy concepts with are found in many fields of

structures. Since variational principles canna't be found

for every problem, the weighted residual method can be used.
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This scheme uses such methods as col location, least square.s,

and Galerkin's. In this study, Galerkin's Metlhod of Weight ~d

Residuals will be ubed for the analysis.

Previous work in solving field problems usin, the FIE1

goes back to 1965 when Zienkiewie;i- (Ref 1) published a paper

on how to solve Laplace and Poisson ecqwaUations. A few years

later, incompressible flow problc:is were solv,,d usin, varia-

tiona 1 m ethod s and produced Cn co Uragin resL I t S . For t ran-

sonic flow, the non-]ineari ty of the equa tioiis caused convcr-

gencc problems in an iterative solution scheneit,. It was not

until 1975, when Shen and Habashi (Ref 2) were able to get

converged solutions for mach numbers near critical. Since

then, others have obtained converged solutions for transoni c

flow using different methods. Wellford and Hafez (R Cfs 3

and 4) used Galerkin's method with iterative solution al-

gorithms based on a velocity approximation. They were able

to show convergence properties for freestream mach numbers

well into the transonic range. Chan and Brashears (Ref 5)

used the least squares method of weighted residuals to obtain

solutions for steady and unsteady transonic flow. More

recently, Marsh (Ref 6) used a relaxation technique applied

to the iterative non-linear term to get converged solutions.

Objective

In this study, the small-disturbance potential equation

will be solved using two finite element techniques to see

if converged solutions can be obtained in transonic flow

over a thin airfoil.. The two techniques to be investigated

f3



are an upwind method used by Christie (Ref 7) and Hleitrich

(Ref 8), and an alternative integration method suggested by

J. Marsh. Neither of these methods have been tried in con-

junction with transonic potential flow.

The upwind method involves developing upwind functions

that when added to the weight functions give the upstream

nodes in the supersonic region more influence than the down-

stream nodes. This is done to account for the fact that in

the supersonic region, solutions at the downstream nodes of

an element cannot influence solutions at the upstream nodes.

In other words, the upwind function should negate the in-

fluence of the downstream nodes of an element in the supor-

sonic region.

The alternative integration method involves more of a

physically intuitive approach to accounit for the area that

influences the solution at a node in the supersonic part of

the flow. Knowing that only the area inside a forward mach

cone can influence the nodal parameter, the finite element

equations were integrated only over that cone, and not over

the entire element as done conventionally in the finite

element method.

4
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II. Problem Description

In this study, transonic flow around a thin symmetric

non-lifting airfoil will be determincd, using potential-flow

theory. Solving the steady form of the non-linear small-

disturbance potential equation using finite element methods

creates a few problems. First, the infinite flow field must

be reduced to a finite one so it can be discretized into

elements. Second, the governing equation changes character

from elliptic to hyperbolic as the flow changes from sub-

sonic to supersonic, and third, the equation is non-linear.

Flow Field

Consider a thin airfoil in an infinite domain s2 with

coordinates (x,y) set up so that the origin is at the mid-

chord (Fig 1). The freestream is steady uniform flow in

the x-direction. The domain 2 extends from the airfoil

boundary 32 to infinity as shown in Figure 1.

In order to simplify the problem, a few assumptions

are made. The infinite domain will be replaced by a finite

one with the boundary 3aoe + 92 + ,Qlxjac/2. The airfoil

is chosen to be thin, symmetric, parabolic and non-lifting.

Thin, so only small perturbation velocities are present.

Non-lifting, so that circulation and the Kutta condition do

not enter the problem, and symmetric, so that the problem

can be formulated in the half space. The new finite domain

f2 is shown in Figure 2, and the airfoil planform is given by
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Figure 1. Thin Airfoil in infinite Steady Freestream
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Figure 2. T'hin Airfoil in Half Space



YX= (1)

where -f is the thickness ratio t/c shown is Figure 2.

Governing Differential Equation

Assuming steady, irrotational, inviscid, isentropic

flow of a perfect gas permits the use of potcntia] theory

to describe the velocity changes in the freestrcam. The

pres2nce of a thin airfoil permits the use of small-distur-

bance theory. The non-dimensional small-disturbance poten-

tial equation (Ref 9) in terms of the non-dimensional velocity

potential is

where K. is the freestream mach number and y is the ratio

of specific heats (y=1.4 for air). Equation 2 is valid for

all points (x,y) in 2.

Equation 2 is used for the case of transonic flow where

the non-linear term 4 Y becomes significant and is re-,x ,XX

quired to describe the flow phenomena that occurs. For low

mach numbers (i.e. M,<0.5) this term is small compared to

the others and is often neglected. For the incompressible

case (M,=O.O) equation 2 reduces to the Laplace equation.

In this study, the form of equation 2 will be used for all

mach numbers from zero to just less than one.

From partial differential equation theory (Ref 10),

eq 2 is referred to as a second-order, non-linear partial



differential equation of mixed character. The equation is

second-order, because its highest derivative is a second

derivative. Non-linear, because of the 4 4' term, and,x ,xx

mixed, because the equation changes character from elliptic

to hyperbolic as the local velocity goes froi.i subsonic to

supersonic, respectively. It is this change, that constitutes

the name transonic. This change happens at some critical

value of freestream mach number Mr when the flow at a pointcr

near the center of the airfoil becomes sonic. As >1 is

increased further, a region of supersonic flow forms over the

airfoil and is called a supersonic bubble. When this region

gets big enough, a weak compression shock forms in the down-

stream part of the bubble to allow the flow to return to

subsonic speed. Along the upstream boundary of the super-

sonic bubble the local mach number is equal to one and the

coefficient of the term in eq 2 is zero; therefore, the

equation is parabolic. The development for transonic flow

over an airfoil is shown in Figure 3.

Boundary Conditions

The boundary conditions for the flow field come from the

fact that the perturbation velocities (u,v) must go to zero

at infinity, and there cannot be any flow through the boundary

of the airfoil In equation form, the boundary conditions

are

1) Vj -- 0 AS r--oco
(3)

2) V ,n =O FOR (X Y) IN rf).0=

- ._. - , A. . . . ..



M< cr 7IIIIiii7~.. Subsonic

PI = f1c T__________________ ranson ic

M 1 M4>1

M.o > 'icr Transonico

M4= shock

(4~~~>M Trno 1
M > crT r n o i

shock shock

M (>1
M (>1 (4>1

M.>i Supersonic

Figure 3. Effect of Freestream IMach Number on Local
Mach Number for Thin Airfoils
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where r is any distance from the origin, 1, is the full

potential and n is a unit vector normal to the surface of

the airfoil. Further development of these boundary condi-

tions is given in Section III. Along the far field boundary

an asymptotic solution developed by Klunker (Ref 11) will

be imposed.



III. Analysis

In Section 11, the governing equation, the boundary

conditions and the difficulties associated with transonic

flow calculations were discussed. This chapter describes

the formulation techniques necessary to solve the problem

numerically using the finite element method. The reader is

urged to refer to the appendices for additional information.

Flow Field Discretization

The infinite domain Q discussed in Section II must be

replaced by a finite flow field so that it can be discretized

into a finite number of elements. This can be done two ways.

First, the far field boundary nf could be taken to be very

large, and the actual boundary condition, given by eq 3, be

imposed. This choice may not be a good one, because a large

flow field requires a greater number of elements, which means

higher computational costs. Also, because the boundary con-

ditions are of the Neumann type, the solution can only be

determined to within an arbitrary constant unless a specific

value of is given for some arbitrary point (Ref 6).

An alternative technique, used in this study, is to use

the far field solution developed by Klunker (Ref 10). For

this technique, = F is specified along the far field

boundary. Klunker's solution satisfies the actual boundary

condition (eq 3) and is valid only at points in the far

field of Q. This approach has been successfully used by

researchers using either finite difference or finite element

12



(Refs 2,5,6) methods. Klunker's method allows the use of a

much smaller domain, as compared to the first method dis-

cussed. This small domain means fewer degrees-of-freedom

and lower computer costs. Klunker's equation for the far

field potential FF for a non-lifting airfoil, ignoring

higher order terms is

x
F I X1(f Y) ff() d' (4)

where

and f(x) is given by eq 1. Evaluating the integral gives

2 X_ _ _1_(5)

F3 TVS8 X2 +Y(l-Mw)

which is a function of the location of the far field points.

Working with a symmetric airfoil at zero angle of attack

allows the problem to be set up in the half space. The flow

field can be designated by two parameters, Xmax and Ymax, as

shown in Figure 4. In order to find optimum values for Xmax

and Ymax, results of tests done by Marsh (Ref 6) will be

used. Marsh, solving this same problem by a different tech-

nique, varied the number of elements in the mesh keeping the

element size the same. He found that the pressure distribu-

tion converged to the assumed solution, for mach numbers from

0.0 to 0.8, when the value for Xmax and Ymax were 1.5 chord

lengths or greatcr. In this study, the minimum dimension

(1.5c) will be used for both Xmax and Ymax.

13
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Figure 4. Flow Field ParametersL

14



Working in the half space, t j,, doimiain C t Lhej proble m

can be broken down into three re!,ions as show! in Figure 4.

Regions 1 and Ill are upwind and downwind Of t'le airfoil

respectively and can be discretized iintu fairly, lar-ce ele-

ments. Region ii, over the airfoil. will be discrQtnzud

finer, because it is here that perturbation velocities change

the most. Over the airfoil is also where the pressure dis-

tribution is required, so more nodes are needed to accurately

depict the pressure distribution. Using a thin airfoil, the

boundary termis of the finite element equations (given later

in this section) are evaluated along the chord (y=O) of the

airfoil. Therefore, the elements in Region II extend down

to the x-axis and do not terminate at the airfoil contour.

The mesh shown in Figure 5 is representative of the

meshes used in this study. Variations include changing

the number of elements over the airfoil, and in Regions I

and III.

Finite Ele:nent Solution

When solving partial differential equations using

finite element methods, it is common practice to transform

the governing equation into the form of the matrix equation

[K +I=IF (6)

where [K] is the stiffness matrix, {} is the soluCion vector

and {F} is the forcing term. The method of weighted residuals [

will be used to accomplish this.

15
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The steady fori of the non-dmnsiona1 sma 1-d strtb,,ce

potential equation (Rcf 9) for transonic I low, yiven by eq 2,

in two dimensions is

-MCO- MO(+-6) Xj44 X i9' 0 (2)

for all points (x,y) in the domain .2. Relationships bewn

the non-dinens n nal paraweLers ( ,x,y) and the physical o, s

( ,x,y) are: x = x/c, y = y/c, and , =/uoc, where u is

the freestream velocity and c is the chord length. If eq 2

is formulated by finite element methods, a set of second-

order, non-linear algebraic equations will result. This can

be simplified two ways, one using an iterative scheme to

linearize the non-linear term; and two, inte,,,rating by parts

to lower the number of continuous derivatives reo,,ired in the

assumed solution so linear elements can be used. Both of

these simplifications will be employed in this study, and arc

elaborated on in the next few paragraphs.

Rewriting eq 2 as

2

leaves 2 as the non-linear term. Using the iterative

approximation (Ref 6)

S In In (8)

where superscript n denotes the iteration, allows the poten-

tial $ to be replaced by a sequence of potentials {0 ¢i

,n n+lSinl} which convergre when

17
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where c0 is some small error chosen as the convergence re-

quirement. In this study, c0 is chosen to be five hundredths

of a percent (Ref 6). Now, eq 7 in iterative form becomes

[--cN ,+ - --0 (10)

where n+l denotes the variable y to be solved for, and n

denotes the variable calculated from the previous iteration.

The method of weighted residuals is a technique used

to generate finite element equations when variational func-

tions are not available. This method assumes an approximate

solution of the form

-(XY) - N(XY) (11)

+L

where the N i 's are functions that satisfy boundary conditions

and the i's are the solutions at global node points i.

Substituting this approximate solution into eq 10 results

in the equation not being equal to zero, but now being

equal to some error c. As the error approaches zero, the

approximate solution approaches the exact one. Therefore,

the object is to get this error as small as possible. This

is done in a weighted average sense by substituting c into

fWd . 0 (12)

18



where Wi. is a weight or test function. Substituting for e

in eq 12 yields

^ n A nti icc 0jO ) x{ ],x ) W~d'O (13)

which is still second-order and requires N i to be continuous

through its first derivative (C ). Integrating eq 13 by

parts eliminates the C1 continuity by shifting a derivative

from $ to Wi and thus requires Ni(x,y) and Wi(x,y) to only

be continuous functions (CO). The resulting equation after

integration by parts is

(14)

+ 20- m t M~~1 c + ncjInX); 3nlnL d S = 0

where @2 denotes the boundary and n = (nxny) is the unit

normal vector to the boundary surface.

When evaluating the boundary term of eq 14, the integral

must be broken down into a series of integrals over each of

the six boundaries shown in Figure 6. Before evaluating

these integrals, the boundary conditions, given by eq 3, for

the governing differential equation must be put into a work-

able form. Recalling, the boundary conditions

as rl-co(15)

and

"nc - o along airfoil (16)

19
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Figure 6. Flow Field Boundary Breakdown
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where the full potential 4' is de fined as

+ (17)

and n. is the unit normal vector on the airfoil given by

VF _ (f, ,-I)=I)VFII I1VFII 18

where

F = f(X)-Y = 0

is the equation of the airfoil given by eq 1. Substituting

eqs 17 and 18 into eq 16 results: in the boundary condition

, 0 (+ (19)

along the airfoil. From symmetry and steady flow in the

x-direction another boundary condition

-O(20)

exists for y=0 where lxi > 1/2.

In evaluating the boundary term of eq 14 for far field

boundaries 1, 2, and 3, in Figure 6, the infinity boundary

condition, given by eq 15, should be used. Since Kiunker's

boundary condition = ff given by eq 5 is used instead,

then W. will be taken to be zero there. The boundary terms

due to segments 4 and 6, in Figure 6, are also zero when

evaluated using nx = 0 and eq 20. The only term that does

not go to zero in the boundary term is for segment 5. Sub-

stituting eqs 18 and 19 into the boundary term of eq 14

21



results in

M2 'nl~ n
M C dX (21)

~:0
Since $ and Wi will be continuous functions along inter-

10

element boundaries, it is possible to integrate eq 14 piece-

wise over the domain. Within each element, eq 11 for a four-

noded rectangle, becomes

or (22)

n(X,¥)= : NK (X Y)

where the Ni's and Nk 's are now elemental shape functions.

The shape function for a four-noded rectangular element is

given in Appendix A. Substituting eqs 22 and 21 into eq 14,

produce the finite element equations in elemental form. The

equations, in the form described by eq 6, are

(23)

+ M' " E q(4) I d~=F
02 L j L

where

Aq = JfWx N1,x dX dY
n

az j=jf Wj, N,, dXdY

22



en

= f{K~N..A..~ dXdY

D. N5,W, W , dX (24)

F-L= -JI IdC1X

where 3.= denotes that these terms apply only to elements on

the boundary of the airfoil. These matrices are evaluated

for the four-noded rectangular element in Appendices A, B,

and C.

All of the parameters in eq 23 are specified except

the weight function W i. The reason for this, is that the

weight function in this study, will change depending on

the method used and whether an element is contained within

the supersonic region. For all the upwind method elements

in the subsonic region (elliptical), and for all the elements

in the alternative integration method, Galerkin's method will

be used. This means that for those cases, the weight function

Wi will be the same as the shape function Ni . In the upwind

method, tie we ighL lunctLion for supersonic (hyperbolic)

elements will be

23



W- N- +OXU (25)

where U. is a n upwind function and t is a test coeffIciunt.

Both the upwind function me thod and the alternative inte;,ra-

tion method will be discussed in detail later in this section.

Transonic Problems

Chapter 11 explained what happens in the flow as tran-

sonic speeds are reached. This sect ion explains how the

phenomena will affect the finite elem, nt solutioi..

Researchers studying the finite element (Refs 12, 13)

and finite difference methods for transonic flow have re-

ported convergence difficulties. Some believed the probl(m

was in the small-disturbance potential equaLi n (Rel 6), hut

Akay (Ref 12) reported convergence difficulties for th, total

potential equation. Others believed the problm was in the

Galerkin formulation, because it does not account for the area

of influence of supersonic nodes (Ref 5).

In the supersonic region, the governing equation is

hyperbolic. From the aerodynamics of supersonic flow, a

point in the flow cannot propagate waves forward; it can

only be influenced by points that lie in a region inside

the mach cone propagating forward, and can only influence

points that are contained in the downstream cone. The

mach cone is defined by the characteristic curves of the

hyperbolic equation. It is believed that neglecting these

phenomena leads to convergence difficulties using Galerkin's
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method. For Galerkin's method, the nodes of an element are

weighted the same when the upstream nodes should have more

influence in supersonic elements.

In order to account for the hyperbolic behavior, re-

searchers have tried various methods. In finite difference

methods, special difference operators (backward differences)

have been developed to insure convergence of the solution.

In finite elements, there has not been a special formulation

developed. Chan (Ref 13) changed the stiffness matrix for

supersonic elements during the assembly process by zeroing

out the rows in the stiffness matrix corresponding to nodes

giving downwind influence. Chan's method gave converged

results, but only for the least squares formulation. Marsh

(Ref 5) modified the non-linear term n n+l by putting
)X ,X

in a relaxation term. His new term replaced x n+1 by

x + n nU, where R was the relaxation
,x x ,x ,x

coefficient which ranged from 0 to 1, and U was an upwinding

factor which also ranged from 0 to 1. The second term was

then added to the forcing vector in the elemental equations.

Marsh got converged solutions for mach numbers deep in the

transonic range. His method worked quite well, the only

difficulty encountered was selecting the values of R and U

for any given freestream mach number. In this study, two

new methods will be tried. One used by Christie (Ref 7), an

upwind method, and the other suggested by Marsh, an alterna-

tive integration method.
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Upwind Function Method

The purpose of the upwind function Ui is to weight the

upstream nodes of supersonic elements more than the down-

stream nodes. The reason for this was explained previously

in this section. The upwind function idea was taken from

papers by Christie (Ref 7) and Heinrich (Ref 8). Christie

applied upwind functions in second-order equations with

significant first derivative terms, and Heinrich used it

for the convective transport equation. Neither one of these

parallels the transonic potential flow problem in this study,

but the method seemed worthwhile to investigate.

Using Calerkin's method, the weight functions W i arc

assumed to equal the shape functions N i. Convergence

problems arise when transonic flow is present, because the

shape functions weight each node in an element the same.

For elliptic elements (subsonic) Galerkin's methos (Wi=Ni)

is used, but for hyperbolic and transition elements (super-

sonic) an upwind function is added to give

W* = NI + CU (hyperbolic)

(25)

Wj= NL + B U, (transition)

where U i is the upwind function and a is a test coefficient.

Transition elements are ones that contain both elliptic and

hyperbolic nodes.

Shape Functions. Elemental shape functions N i (Ref 1),

must be equal to on,2 at node i and zero at the other three
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nodes. The shape functions for the bilinear rectangle used

in this study are

NL= (1+ )(I± L7) (26)

where (F,,n) are the variables in local coordinates, and

(Ci,ni) are the local coordinates of node i, i = 1,2,3,4.

Figure 7 shows the relationship o shape functions within

the element. By superposition, the nodal shape functions,

eq 26, are added together to give the curve of the elemental

shape function in Figure 8. Notice that the curve is con-

stant over the element boundary. This shows that all the

nodes are weighted the same.

Upwind Function. The purpose of the upwind function is

to weight the upstream part of an element in the supersonic

region more than the downstream part. This will be done by

making Ui a piecewise parabolic function of the form (see

Fig 9)

f + K,( 1+ ) -1<r< 0

Ui (27)
4 ( H2)2 + K?]l+ Q ~ ~

,1

where (I1,K) are the coordinates of the vertex of the parabola

and P is half of the latus rectum (twice the distance from

the vertex to the focus). Figure 10 shows a plot of W. =

N i + UU i (a=l) so the effect of the upwind function can be

seen. Notice, now the upstream part of the element is
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weIghted more than the downs treaui part.

Elciaontal UnwAind LCZtin.Substituting' W. = N. + uUI.

into the ele-:intal uiquation, given by eq 23, yields a new

set Of ejLuatiC)nS to be uIsed for hyperbolic elements:

[(I -M'~)(Ai+oXAU j)+ Bq1+ OCBUcj 4-UC-

(28)

wh-,re A ij Bj , C i , 1 , i a nd f were defined by eqs 24

AU- {f N;,xLx dxcd

B~~q= I, kdxd%.3

CU-,1(4: 4JfN ,Ni,, Uj,,dxdy
.0- (29)

DUi= I fN;,, U L5 d

FU=J U1  Y,
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where M. again means this integral is only applied for

elements on the airfoil. Appendix B evaluates eqs 29 in

matrix form for a bilinear rectangular element.

For the upwind method, c=0 will be used for elliptic

elements, and a greater than zero for hyperbolic elements.

The elements that have some nodes elliptic and some hyper-

bolic (transition elements) will use a value of greater

than or equal to zero. Note that a =  = 0 reverts the

elemental upwind equations (eq 28) to the elemental equations

given by eq 23.

Alternative Integration Method

This method is based upon physical intuition and uses

Galerkin's method for all elements. A modification is made

for hyperbolic elements; the integrals (eq 24) are integrated

only over the element area contained inside thc forward mach

cone (i.e. not over the entire element as done in Appendix A).

To find the form of the elemental stiffness matrix,

the equations of the mach lines must be found. The mach

lines are given by the characteristic lines of the governing

differential equation given by eq 2 as

4 4+ 0 0 (30)

where 1/c2 = 1 -i2 - 12(l + Y), n Since u = can be,x ,X

calculated frm the previous iteration and the element is

small compared to the flow field, i/c 2 will be assumed

constant. When the term is negative, eq 30 becomes
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4) ~ 0 (31)
2

which is hyperbolic. With 1/c 2 constant, the characteristic

lines (Ref 10) are defined as

Y= CX+d Y=-OX4-d (32)

which must now be transformed to local coordinates by the

transformation equations

and b

where Xc, Yc' a, and b are shown in Figure 7. The charac-

teristic (mach) lines now take the form

MI B=- + (33)

where
M = 0" "

B= -+ - YC

Now that the equations for the mach cone are known for any

point in the supersonic region, the influence on the stiff-

ness matrix [KI can be determined. K.. is defined (Ref 1)
ii

as the force at node i due to the unit potential at node j.

Therefore, only terms in which node i falls into the mach

cone at poi t j have influcnce in the solution.
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When an element aspect ratio b/a is greater than or

equal to the slope c of the mach lines, the elements take

the form shown in Figure Ila and its stiffness matrix takes

the form

K 1 0 0 0

K21 0 0 K24

K31 0 0 K34

0 0 0 K44

Similarly, when b/a is less than c, see Figure llb, the

stiffness matrix is

K 11 0 0 0

K21 0 0 0

0 0 0 K3 4

0 0 0 K4 4

where K.. in both cases is calculated for a bilinear rec-
ij

tangular element in Appendix C.

Transition elements pose more of a problem, because a

linear interpolation scheme must be imposed to find the

value of n* where the element changes from hyperbolic to

elliptic. If the slope of the characteristic curve passes

through ¢ = -1 below q*, that intercept must be used as the

limit of integration in the n-direction, otherwise, rp* will

be used. In either case the element shown in Figure llc

has a stiffness matrix of the form
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K1 1  K1 2  0 0

K21 K22 0 0

0 0 0 K 3 4

0 0 0 K4 4

Again, Appendix C calculates the values for K.1.

Summarizing the alternative integration method, the

elliptic elemenits use Galerkin's method integrated over the

entire element. The hyperbolic aid transition elements are

integrated over the area inside the forward roach cone. For

example, for b/a<c, the limits of integration for K2 1, for

the area shown in Figure 12, are

1 1

I IF(Tq)drdi

-I M,'3B
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IV Results

Transonic flow over a six percent thick airfoil was

solved for using the two upwind techniques described in

Chapter III. For each technique, different parameters

were varied in order to study the convergence behavior

of the solution. Before the transonic cases were tried,

the incompressible (M.=0) case and subsonic cases were

tried to see if the finite element equations defined in

Appendix A accurately modeled the flow.

For incompressible flow, the solution shown in Figure

13 was found by directly solving the finite element equa-

tion. This solution is compared with the exact solution

(Fig 13) for two discretizations. Grid A was the same as

shown in Figure 5 and Grid B was similar, except it had

ten divisions over the airfoil instead of eight. Taking

the value of the coefficient of pressure in an element to

be at the mid point between nodes, Figure 14 shows that

the finite element solution ---sely approximates the exact

solution.

Subsonic cases were tried for freestream mach numbers

between 0.2 and 0.8. All these cases were below the criti-

cal mach number Mcr , and converged within four iterations.

They also agree with linear theory until Mc. got tear 0.8,

when the non-linear term started to show its effect. Figure

15 shows the pressure distribution for Mo=0.2, 0.4, 0.6, 0.8,

and Figure 16 shows the difference between the linear (Ref 6)
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and finite element. solutions for MjO0.8. Notice that the

difference between solutions is slight, even at Mj=0.8.

Using Galerkin's method, without upwind techniques,

mach numbers above 0.8 were run to find the critical value

of Me. Figure 17 shows the pressure distributions found

for the mach numbers that converged. The critical free-

stream moach number was found to be between Mw=0.83 and 0.84

for a six percent thick parabolic airfoil. Notice that the

solution does converge for 110,=0.84 and 0.85. This is be-

cause the supersonic region is small. Figure 18a,b shows

the transition aid hyperbolic element in the flow field

for M,=0.84 and 0.85.

in Figures 19 and 20, convergence behavior is shown

using Galerkin's method for MO=0.85 and M.,=0.86. At M.=0.85

the solution converged after seven iterations, and at

M.=0.86, the solution diverged because of the presence of

two hyperbolic and four transition elements. As the free-

stream mach number icreased from zero to 0.85, the number

of iterations required to get a converged solution increased,

and above M=0.85, the iterative scheme diverged. This be-

havior is graphed in Figure 21 for convergence criteria in

the sense of eq 9.

These calculations proved that the finite element method

as formulated worked until transonic flow developed. The

techniques discussed in Chapter III were then tried to see

if convcrgent solutions occur for Mcr < < 1.0 which is in

the Lra'nsc,,c region. The rest of this section discusses the
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eresults obtained for the upwind and alternative integration

methods.

Upwind IMethod

The upwind function method discussed in Chapter III was

tried for several variations of the test coefficients a and

, the area under the upwind function curve, the freestream

mach number M., and the y-direction upwind influence (BU.j).

Y-Direction Influence. The upwind functions given by

eq 27, are only functions of x, and do not affect the y-

direction. The reason for this, is that the freestream flow

is parallel to the x-axis. Because of this, the y-direction

contribution to the elemental upwind equations can be neglec-

ted. The only term in the clemental upwind equations, given

by eqs 28 and 29, that is related to the y-direction is the

BUij term. Whenever this term was included in the elemental

stiffness matrix, the solution diverged, or at best oscillated

about some solution.

Test Coefficient Influence. The test coefficients a,

B appear in eq 25 as

Wi= N,+XUL for hyperbolic elements

and

W - N+j3 U . for transition elements

Their purpose was to vary the strength of the upwind function

in order to achieve convergence. The full influence of a
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and a cannot be expressed wiLhout considering the upwind

function itself, but some generalizations can be made. First,

it was found that whenever either of these values was greater

than one or less than zero, the solutions for any upwind

function diverged rapidly. Also, whenever the value of

for transition elements was greater than a for hyperbolic

elements, the solution again diverged rapidly. The solutions

that used a value of , one half the value of c seemed to have

better solutions, but this depended on the mach number and the

upwind function used. These effects will be incorporated in

the subsection on different upwind functions.

Mach Number Effects. The value of the freestream mach

number Mc had a large effect on the convergence of the solu-

tion. When M.>0.87 , convergence never occurred for all

upwind functions and test coefficients tried. For Mo,<0.87,

convergent solutions were obtained, but depended on the

upwind function parameters and test coefficients. The de-

tails are presented in the next subsection.

Upwind Function Influence. The equations for the up-

wind function, given by eq 27, are

+i(-Hf K, =:0 -<
4 R

4P2

The vertex of the piecewise parabolas (H,K) can vary.
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Examples of different upwind function parameters are shown in

Figure 22. For explanation purposes, the area above the -

axis will be called the positive area, and the area under the

-axis will be referred to as the negative area.

In all three cases of Figure 22, upwinding is present,

whether it be more influence from the upstream part of an

element, or less influence from the downstream part. It

was found, that whenever the amount of positive area was

greater than the amount of negative area, Figure 22a, a

divergent solution occurred. This happened no matter what

value of a and 8 were used. Pressure plots of divergent

solutions are not very informative except to see where the

divergence took place; so they will not be shown. In most

cases, divergence occurred only where hyperbolic elements

were Dresent.

When the positive and negative areas were equal, Figure

22b, the solution was found to be oscillatory for certain

values of a and a. For a less than one, all solutions di-

verged no matter what value of 8 was used. When a was equal

to one, and 0.1 < 8 < 0.9, oscillatory solutions for 0.25 <

K1 < 0.5 and divergent solutions for other K, values where

found. The oscillatory solution in Figure 23 is representa-

tive of what happened for equal area upwind functions with

c=i, 0.1 < 6 < 0.9 and 0.25 < K1  0.5.

When the negative area was greater than the positive area,

Figure 22c, convergent solutions occurred for certain values

of i,12, K1 ,K2,U,8 and M . Varying 111,H2 ,KIK 2 resulted in
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one combination that converged, and is shown in Figure 22c.

Using this combination converged solutions occurred at M.=

0.86, a=l.0, a=0.5 and M,=0.86, a=0.5, a=0.5. All other com-

binations diverged or oscillated. These two converged solu-

tions are shown in Figures 24 and 25.

Alternative Integration Method

The alternative integration method discussed in Chapter

III was tried for a couple of cases. These included varying

the mach number and the y-direction influence. The y-direc-

tion influence was varied by multiplying the BU.j term of

eq 29 by a coefficient ranging from zero to one. The mach

number was ranged from 0.84 to 0.95.

In all cases, extremely divergent solutions resulted.

The supersonic region expanded to the far field or physically

unrealistic flow developed (i.e. supersonic flow developed

upstream of the airfoil). Even when more elements were

added to the grid over the airfoil, divergent solutions

resulted. Figures 26 and 27 are representative of the

effects of the grid size on the solution. Similar solutions

resulted when the mach number and y-influence were varied.
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V. Conclusions and Recommendations

The upwind and alternative integration methods used in

this study did not produce acceptable solutions to the

small-disturbance potential equation for transonic flow.

When the supersonic region covered more than two elements,

the solution diverged, except for the cases of upwind

parameters (H,K) showi in Figures 24 and 25.

Upwind Function

The upwind method, described in Chapter III, is not

recommended for future use, because there are too many

variables that must be optimized to get converged solutions.

The solution depends on the freestream mach number M.,

the upwind parameters (HI,KI), (H2 ,K2 ), and the test

coefficients a and B. All of these must be incorporated

in the finite element assembly process. It might be pos-

sible to use different upwind functions, such as piecewise

linear or trigonometric functions instead of piecewise

parabolic, and further study is warranted in this area.

Alternative Integration Method

This method gave divergent results for all cases, and

as it stands, is not recommended for further study. Other

approaches might be taken, for example, assembling the

global stiffness matrix an equation at a time instead of an

element at a time, the effect of nodes that have no in-

fluence on the solution could be zeroed out. Another
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approach, could be to assurne that the border between the

super and subsonic regions be considered a boundary. Then

solve the elliptical part, and using the solution on the

border, apply it as a boundary condition when solving the

hyperbolic part. This process would have to be done itera-

tively until the solution agreed on the boundary between

the regions.
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Appendix A

Finite Element Equations for a

Bilinear Rectangular Element

Elemental Equations

The finite element equation for the governing differen-

tial equation in elemental form as derived in Chapter III

is

[(I-M')Aji+B -. M2* 4 + + MD,,

+ +n) (A-1)

where Aij , Bij , Cij, Dij , Eij and Fi are defined by eqs 24.

Shape Functions

The shape functions (Ref 1) for the bilinear rectangular

element shown in Figure 7 are given by

NiT- '-(I+" ij) (I + qi7) i -] 3,. (A-2)

where ( i,ni) are the coordinates of the corner nodes in a

local coordinate system ( Since the elemental equations

are expressed in global coordinates, they must be transformed

to local coordinates by the transformation equations

X X5 and -YYC (A-3)
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Substituting eqs A-3 into the elemental equations given by

eq2 24 result in
II

AY =IffN 1, Nj,1 df di?

BCLj= .=t Ni,q Ni, d Nd d

It

(A-4)

-I
-!f) 11= -I

where Dij, Eij , and fi apply only to elements on the airfoil.

In eqs A-4, the Aij , Bij and Cij terms depend only on

the shape of the elements and not on their position. They

can be integrated and evaluated for i 1,2,3,4 and j 1,2

3,4 to produce the following symmetric matrices:

"1 -l -

A~ = 1 -

1-1

1
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1 - -I

-a 1 -i -Bi 3 b 1

1

Cl1  -ClI -C14 C14

CI C14  -C14

C3 3  -C3 3

C33

where

o,,: _ [ '+ (i
1,4 2 [4 a + 4- 3

033 8a2[1 4 + +42- c3

where the 4 in s are the solutions at node i from the previous

iteration.

The remaining equations in A-4 are dependent on the

position of the element. The quantities Dij , Eij and f.

exist only for elements that border the airfoil. These

quantities are evaluated at n = -1, because a thin airfoil

is being used. The equation of the airfoil is

Y=x f- a ( Z 6
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where T is half thickness ratio. For this airfoil, Ei , Dij

and f. are evaluated to be

0 0 0 0
o 0 0 0

0 0 D33 -D33

0 0 -D44 D44

0 0 0 0

o 0 0 0
0 0 E33 -E33

0 0 -E44 E44

0

2D 3 3

-2E4

where -

D[

2 a' 3.
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Appendix B

Upwind Functions and Elemental Equations

In the upwind function method described in the text,

the weight function is replaced by

NL= NL+aU- (B-i)

in elemental equation 23, forming eq 28. The terms in

the elemental upwind stiffness matrix and force vector

(eq 29) with the limits of integration are

- It

-- -!I

(B-2)

FU= Xu ,K
7:0
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Transforming eqs B-2 to local coordinates and substituting

4pT -H,) +K, ]( I+ j ) O%<T<
4 P,1

and

N= (I +IT)( 0 +9)

results in

AI  -A1  -A2  A2

A -A1  AI  A2  -A2
U I -A 2  A2  A3  -A3

A2  -A2  -A3  A3

B B2 -B2  -B1

B3 B4 -B4  -B3

BU" 4 b -B 2  -B 4  B4  B3

L -BI  -B2  B2  BI

C 1 -C 1 -C2  C2

-C CI  C2  -C2

CU--(4p) - -C2 C2  C3  -C3

C2  -C2  -C3  C3
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0 0 0 0

0 0 0 0
DU1i= 8t

0 0 D -D
0 0 D -D2

EUq ( DU j]
2 2a

0

on 4

0
FUi 16 za 0

D1
D2

where

Ai= 3 4 3 2

W

x Y 2.w zA3= -- - 3 -'-E33

B2= - - + '3 -L ++ ' Ti

24 4
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- .x ~_v _ s
B~44 8 76 2' f

12 3 (51. 1

+ 12 +12.7 )

Sa ya wa8 ua X),m,\),+ -Z - 7 16  6 8 IT2

12 4 4 2

where

Pa P

P? Pt
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H1  H2

P, Pa

H, HP, P2

P. P2

S = K? - K,

T= K2 + K,

I H,
P, P,

R= 
Hz2 P Pa

which are all functions of the vertex (HiKi) and the latus

rectum 8P i of the parabolas.
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Appendix C

Elemental Equations for the Alternative

Integration Method

The elemental stiffness matrix using the alternative

integration method is evaluated for hyperbolic and trans-

ition elements by integrating eqs 24 over the area that

influences each node. This area is the area inside the

forward mach cone at position j. For example, look at the

elemental stiffness matrix terms

KI KI KI KI

K 1 1  K12 K13 K14

K.. K2 1  K22  K23  K2 4

iiK K K K
31 32 33 34

K4 1  K4 2  K4 3  K44

for the bilinear rectangular element. Kij is the force at

i due to a unit potential at j. From this statement, the

influence of each term in K.. can be evaluated. For the
13

element in Figure C-1, with mach cones shown, Figures C-2

and C-3 show which Kij terms are influenced by the mach

cones. Figure C-2 is for hyperbolic elements and Figure

C-3 is for transition elements.

Hyperbolic Element Stiffness Matrix

The form of the stiffness matrix changes depending on

whether the slope of the mach cone lines include one or two
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________________________ 0 , ( 1))

Figure C-1. Mach Cones in Hyperbolic Rectangular
Element
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c>a/b c<alb

Kll 'K21' K31 K llK21

K4 1=0.0 K 31=K41=0.0

K24, K3 4, K44 K34, K44

K1 4=0.0 K1 4 =K24 =0.0

K i2K i3=0.0 K i2-K i3=0.0

F .ir,, C-2. Influence of Alternative Integration
',thod on the Elemental Stiffness Matrix

.btic Elements

74



2 4

KII,KI2,K21,K22

K31=K41=K 32=K 4 2=0.0

K34'K44

K14=K24=0.0

Ki3=0.0

Figure C-3. Influence of Alternative Integration
Method on the Elemental Stiffness Matrix
for Transition Elements
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nodes (see Figure C-2). For the case where the slope c of

the characteristic line is less than the aspect ratio a/b

of the element, the terms of eq 23 when integrated over the

area of corresponding mach cones result in

Al 0 0

-All 0 0 0
ALt Ba 00-A 40

L 0 0 0 A 4

I- B,-M. 0 0 0

B 0 0 0
B- a 7.

0 0 0 L
0 0 0 2. +f2.l

[QGj2(c+ C2)~ (- )(ci-C;2)] 0

___ 0

'*~j ~0 0

0
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0 0

tO 0

0 -C4 4

,0 [( 4)I(3+ C4) + (3C)

where

1  -, 1 z,-L3 -- LM.?- B M?

A 4 ~+a+BB~ M2+ IBMa

3 3 3 a 3L

3 3 31 3 2

4 6 3 Z 3 z4  to 2

BI,BLIMI,M2L FROM EQS 33
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When c is greater than or equal to a/b the resulting stiff-

ness matrix terrms of eq 23 take the form

A(I B,) 0 0 0

0 00G-A 0 0 0 el)

aM(I-B) 0 0 -A44

o o o i(-B,+1)

G 0 0 0

0 0 0 K,
Bij= a0 0 -

b -H 0 0

0 0 0 K

0-- A B)] o

b -C 0

0 0

I0 0

I 0 -C44
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where

G = 28,+ 2B, 2B, 2 2B. 2
Me M,' 3M'33 M. ; 3M 3

H=2B 2B, + 2B 2 3 +2?

M- 3M 3M,3  3

2= 82 2 2 + 2
M? 3M 3 M 3

2E 2 2B 2% 2B,._ 2
Ma 3M2  M2 3M2  3M3 3

In both of the above cases, D and Eij from eq 23 are the

same as derived in Appendix A with E = 33= D = D43 = 0.0

Transition Element Stiffness Matrix

In the transition element, the coefficient I/c2 of eq 30

changes from negative to positive. A linear interpolation

scheme must be employed in order to find the point n* where

the coefficient is zero. Using

2C,

to find this position, where C1 and C2 specify the value of

the coefficient of eq 31 at the top and bottom of the element

respectively. For terms of the stiffness matrix that deal

with the mach cone from node 4, it is possible that the

intercept at n=-l be less than r*. For this case, a new
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I

value of intercept must be used in the limits of integration.

This new term n(-l) is calculated from the characteristic

equations for r=-l. Therefore, for stiffness matrix terms

that deal with the mach cone at node 4 will have an upper

limit of integration given by

Now, integrating eqs 23 over the corresponding areas in

Figure C-3 results in

All -All 0 0

_ -All All 0 0
0 0 0 -A 4 4

0 0 0 A4 4

4 0 03 3

B-t 3 3

0 0 0 B34

0 0 0 B44
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CII Cit 0 0

bl cl11 C12 0 0

o 0 0 04

where E

++

M? 3M

M(jr3ZE+1~)fiI

B32 \a J A. M I

+04- -

844 L 3 . - 3 81.



A ( M-'K ()4 (4- L

-4 -7 )

15_ __r _
a((44"T q + BOU I" -"D

4

3~

k= - yr + + .X

The Dij and Eij parts of the stiffness matrix are the same

as shown in Appendix B with D = E D = = 0.
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